
W
h

it
e

P

a
p

e
r

A Hierarchical and

Configurable Strategy to

Verify RISC-V based SOCs

Arun Chandra, Mike Bartley, Tessolve

1.0 Abstract

RISC-V (pronounced “risk-five”) is an open, free ISA enabling a new era of processor innovation

through open standard collaboration. Born in academia and research, RISC-V ISA delivers a new level

of free, extensible software and hardware freedom on architecture, paving the way for the next 50

years of computing design and innovation.

A RISC-V microprocessor can be configured in several architectural modes depending upon the

target market and applications. Further, each microprocessor implementation can have different

micro-architectural parameters depending upon performance, and power considerations. Examples

of such micro-architectural parameters are cache sizes, the use of branch prediction, result

forwarding, and pre-fetch to name a few.

This paper outlines a hierarchical and configurable verification strategy for RISC-V based IP and

SOCs. A three-level (unit, core and SOC) hierarchy is proposed for test benches. Each level of the

hierarchical test bench is configurable for both architectural and micro-architectural parameters. At

the heart of the verification strategy is an ISG (Instruction Stream Generator) and a UVM test bench.

The ISG can be configured according to the RISC-V architecture and then constrained to verify micro-

architectural features. The generation of the specific configurable UVM test bench is automated

based on a configuration file. The checkers, active test bench items like injectors, and coverage

objects, are mostly portable across the various hierarchical levels, and are configurable based on the

configuration file.

At the SOC level the tests are less ISG based and tend more towards C-based integration and use

case tests ideally suited to the use of portable stimulus (as defined in the Accellera Portable Test and

Stimulus Specification and supported by Questa inFact, Cadence Perspec and Breker Systems Trek).

This allows tests to be easily ported across multiple SOCs with minimum effort, and to also be used

in silicon validation.

Doc Revision: Version 1.0

Doc Revision Date: March 1, 2018

www.TESSOLVE.com

sales@tessolve.com

W
h

it
e

 P
a

p
e

r

http://www.tessolve.com/
mailto:%20sales@tessolve.com
mailto:%20sales@tessolve.com

A Hierarchical and Configurable Strategy to Verify RISC-V based SOCs

© Copyright TessolveDTS, Inc. 2018

1.0 Introduction

A RISC-V based SOC can be configured into different

implementations based on architectural or micro-

architectural parameters. To address the verification

challenge this poses, a hierarchical and configurable

verification methodology is proposed. A three-level hierarchy

is proposed. The lowest level of the hierarchy is the unit-level.

Two unit-level test benches are proposed. These are 1)

Execution (Pipeline) Unit, and 2) Cache (L2) Unit.

The Execution (Pipeline) Unit consists of the major

pipelines components like Instruction Fetch, Instruction

Decode, Instruction Execute, and Load Store. Both the level

one caches (instruction, and data) are included in this unit. The

Cache (L2) unit consists of the second level cache. The second

level of hierarchy is the Core Level. At this level multiple

Execution Units and the L2 cache are connected via a coherent

bus. Both the unit-level test benches, and the core-level bench

can be configured for a specific implementation. The highest

level of the hierarchy is the SOC which consists of the core and

peripherals like PCIe, and MIPI.

An important feature of the verification methodology is

that a test bench at any level is configurable based on

architectural and micro-architectural parameters. Further,

based on a configuration file, the test bench is automatically

generated for the desired level and configuration.

Subsequently, tests both directed and automatically

generated can be run on the test bench.

The stimulus for the test benches can be instruction-based

for ISA heavy components like the Execution Units (Pipeline),

or transaction-based for testing the L2. Checkers are

reference-model based or assertion based. Checking the

pipeline is done using a reference model checker, and it is a

same for the L2 where a L2 behavioral model is needed.

Additional checking is done via assertions. An example of an

assertion check is that READ and WRITE are mutually exclusive.

Additionally, loaders and injectors are part of a generated test

bench, and generated via a configuration file. An example is a

32KB two-way set associative cache pre- loader.

In the rest of this document we cover Test Bench

Architecture, the Stimulus, Checkers, Pre-loaders and

Injectors, Coverage and Development Milestone, and

Conclusion.

2.0 Test Bench Architecture

The hierarchical test bench architecture is show in Figure

1. The stimulus, portable checkers, and interfaces are show in

this figure.

Figure 1 Hierarchical Test Bench Architecture

2.1 Unit-Level Test Benches

There are two test benches at the unit level, these are the

execution unit (pipeline), and the second-level cache (L2)

2.1.1 RV Execution Unit (Pipeline) Test Bench

The RV Execution (Pipeline) Unit Test Bench verifies the

single-issue, in-order pipeline. The five-stage pipeline consists

of instruction fetch, instruction decode, execute, memory

access, and write back. The instruction cache and data cache

are also part of the execution unit. A unit to handle interrupts

from the pipeline perspective is also part of the execution unit.

As the short pipeline does not have to deal with micro-

architectural verification bottlenecks of a longer superscalar

pipeline, it is recommended that all the components in the

pipeline be treated and tested as one unit.

Examples of such bottlenecks are register renaming,

floating point converts for non-committed instructions, stalls

due to load store dependencies, integer and vector register un-

naming due to branch misprediction, and reservation station

stalls. However, one micro-architectural area that needs to

be handled is branch prediction. The branch predictor

comprises a branch target buffer (BTB), a branch history table

(BHT), and a return-address stack (RAS).

The stimulus to this unit will be RISC-V instructions whose

binary values will be loaded into a L2 behavioral model. These

instructions could be directed hand-written tests, or tests

output from a random Instruction Stream Generator (ISG).

Additional inputs apart from instructions will be interrupts, and

injected errors. The test bench also contains pre-loaders to

preload the caches, and branch predictor array structures.

The reference-model checker for this unit will be an

instruction-based instruction set simulator (ISS). A trace tool

will monitor the RTL for PC, and Register Value Updates, and

will compare against the output of the ISS. Additionally, micro-

architectural checkers will be added especially with respect to

branch prediction, and exception and interrupt handling.

A Hierarchical and Configurable Strategy to Verify RISC-V based SOCs

© Copyright TessolveDTS, Inc. 2018

2.1.2 L2 Test Bench

The L2 test bench will verify the second-level cache. Both

its interface to the level-one (I and D) caches, and main

memory will be verified. The stimulus to this unit will be

transactions including, Read, Write, Invalidate, and Refill. The

stimulus to this unit will come from a constrained-random

transaction generator like a UVM sequencer. Additional

inputs to this unit will be injected errors to test the ECC

mechanisms. The test bench also contains pre-loaders to

preload the caches,

The reference-model checker for this unit will be a

reference model (L2 Behavioural Model). This model will

model the L2 at the transaction level. The L2 state, in addition

to transactions output will be compared against the RTL.

Additionally, micro-architectural checkers will be added,

especially if there are low-power features included in the

implementations.

2.2 Core Test Bench

The Core-Level Test bench tests the component in the core

complex. These include the RISC V Execution units, the

Coherent Bus, and the L2 Cache. It also contains the interrupt

units, and the debug unit. The stimulus into the core will be

both instruction-based, and transaction-based. As the RISC-V

execution units, and the L2 have been verified at the unit level,

the focus of core-level verification will be stressing the

interconnect fabric, and the interrupt, and debug units.

The stimulus for this bench will come from the various

ports. RISC-V assembly stimulus generated by hand, or using

a random instruction generator or ISG will come from the main

memory behavioral model connected to the memory port.

The instruction-based tests should generate traffic to the

system port for un-cached access to high bandwidth

peripherals. The instruction-based tests should also be able to

generate traffic to the peripheral port for accessing peripheral

devices. The system port and peripheral port can be mapped

into two different address ranges.

The stimulus for the Front Port is transaction-based and

comes in the form of requests to the ITIM, and DTIM. In

addition, the core-level test bench has transaction-based

stimulus for interrupts, and debug requests.

All the checkers from the unit-level are ported to the core

level. Additionally, at least four categories of checkers are

added at the core-level. These area: 1) An interface checker

to check for bus transactions on the coherent bus, 2) A checker

to check interrupt request, and subsequent servicing, 3) A

checker for debug requests, and servicing, and 4) A checker for

Port requests and servicing. These checkers can be

implemented as UVM style scoreboards.

Checkers for arbitration and micro-architectural checkers

will be added as needed. An example of an arbitration checker

is to guarantee that the I/O ports get fair access and are not

timed out. An interrupt priority checkers checks that if two

interrupts are pending, the higher priority one gets serviced

first.

2.3 SOC Test Bench

The SOC test bench is the top-level bench and exercises the

interfaces between the core complex and the peripherals like

PCIe and MIPI. The input into the SOC bench is based on the

Portable Stimulus standard proposed by Accellera and

supported by Mentor, Cadence and Breker Systems.

Portable stimulus provides a specification of test intent and

coverage at a higher-level of abstraction. Also, it provides

graph-based randomization. The Portable Stimulus will be

generated for a specific implementation using the

configuration file.

All the checkers from the unit-level and core level are

ported to the SOC level. Additional VIP checkers from the

PCIe, and MIPI will be integrated. Finally, interface checkers

will be built at the SOC level.

2.4 Configurable Test Bench Generation

The generation of an implementation specific test bench is

based on a configuration file shown in Figure 2. The fields in

the configuration file, which are both architectural and micro-

architectural determine the implementation specific test

bench. The major fields in the configuration are described

below.

SOC-COMPONENTS = RVCore, PCIe, L2, MPHY;

RVEXE-COMPONENT-ARCH = I,M,F;

RVEXE-COMPONENT-URACH = 32I(2), 32D(2), BTB, BHT(1), RAS;

L2-COMPONENT-UARCH = 2MB(2), ECC;

L2-COMPONENT-POWER = 1;

CORE-COMPONENTS = RVExe[0..3], L2, TileLink, CLINT, PLIC, Debug,

I/O[M,F,S,P];

LOW-POWER = Domain(1), Clock-Gating(ON);

Figure 2 Configuration File for Test Bench Generation

The SOC-COMPONENTS field lists all the components of the

implementation. The example shown below shows a RISC- V

cores complex, PCIe, L2, and MIPI amongst other components.

The RVEXE-COMPONENT-ARCH field lists the ISA variant for

the RISC-V core. This describes the number of general

purpose registers, and the various extensions (M, C, A, F, D, and

Q). The example below shows a RISC-V execution unit

supporting 32 registers, multiply and divide, and single

precision floating point.

The RVEXE-COMPONENT-UARCH field lists the micro-

architectural features for the specific implementation. These

include the cache sizes, and associativity, and branch

prediction structures. The example below shows a two-way

set associative 32KB instruction and data cache, a BTB, a single-

level BHT, and a RAS.

The L2-COMPONENT-UARCH lists the second-level cache

micro-architectural features. This includes the cache size and

associativity, and error correction if enabled. The example

below shows a 4-way set associative 2 MB cache.

A Hierarchical and Configurable Strategy to Verify RISC-V based SOCs

© Copyright TessolveDTS, Inc. 2018

The L2-COMPONENT-POWER field lists the number of

power domains for the second level cache. This is a low-power

feature.

The RVCORE-COMPONENTS field lists all the core

components for the specific implementation. The example

below shows, four RV Execution units, the L2 cache, the inter-

connect, the interrupt, and debug unit, and the I/O ports.

The LOW-POWER field describes the low power techniques

used in the SOC like clock-gating, and multiple power domains.

LOW-POWER = Domain(1), Clock-Gating(ON)

The desired test benches are generated based on a

command line that specifies the benches needs, and the

configuration file. As an example, all the test benches (Unit,

Core. SOC) are generated using the configuration file, and the

unit-level (RVEXE) bench shown in Figure 3 is generated using

the second command line.

Cmd1: rvtbgen –all rv101.config

Cmd2: rvtbgen –rvexe rv102.config

Subsequently, after the appropriate test bench is

generated, random tests using the test pattern generators are

generated. Additionally, directed tests can also be written to

run on the appropriate test bench. The overall methodology

for configurable test bench generation is shown in Figure 4.

3.0 Stimulus

3.1 Areas Under Test

The configuration file is key to generating the constrained-

random stimulus. As an example, no floating instructions will

be generated if the F mode is not supported. Another example

is that back to back branch instruction generation-weight will

be lower if branch prediction is not supported. At the unit

level, stimulus will be provided to the RVEXE unit or L2 unit.

Examples are integer instructions for the RVEXE unit, and L2

DCache interaction for the L2 unit.

The core complex unit stimulus will include Cache Coherency,

and Virtual Memory and Protection handling. Finally at the

SOC-level interrupt handling, reset, and Low Power features

will be tested.

3.2 Instruction-Based Stimulus

Instruction-based stimulus comes from a RISC-V

instruction stream generator, constrained by both

architectural and micro-architectural constraints.

Additionally, instruction-based stimulus can also come from

directed tests. Examples are integer instruction, branch

instructions, floating point instructions, or memory

instructions.

Figure 3 Unit-Level (EXE) Test Bench

Figure 4 Hierarchical Test-Bench Generation

3.3 Transaction-Based Stimulus

Transaction-based stimulus used in the L2 and Core is

constrained by both architectural and micro-architectural

constraints. It is generated by UVM-Style sequencers, which

subsequently call sequences. Additionally, transaction-based

stimulus can also come from directed tests. Examples are L2-

I/D Cache interactions, L2-Memory interaction, and L2-Error

Handling.

4.0 Checkers

4.1 Reference Model-Based Checkers

The following reference-model checkers are need. They

will be generated from the configuration file. As an example,

the L2 cache size and associativity will determine the L2

behavioral model, and subsequent checker. Also, the branch

prediction checker can be customized based on the RAS

availability.

1. Pipeline Checker

2. Branch Prediction Checker

3. L2 Checker

At the unit-level, for the RVEXE unit the following

reference-model based checkers will be needed:

A Hierarchical and Configurable Strategy to Verify RISC-V based SOCs

© Copyright TessolveDTS, Inc. 2018

 Pipeline Checker – The reference model for this checker

will be the ISS. A pipeline monitor from the RTL will extract

PC update, and Register updates at instruction commit.

These values will be checked against the output of the ISS

Branch Prediction Checker – To accurately verify branch

prediction, a reference model will be built to model the branch

prediction structures (BTB, BHT, RAS).

For the L2 unit, the following reference model checkers will

be needed.

L2 Checker – To accurately verify the L2, a L2 behavioral

model will be built. The output of this checker will be checked

against the RTL at a transaction granularity.

These reference model checkers will be portable to the

core complex and SOC level.

4.2 Assertion Checkers

Two kinds of assertion checks will be needed, these are

low-level assertion checks, and high-level assertion checks. All

these assertion checks will be portable for all three hierarchical

levels, unit, core, and SOC.

Low-level assertions are written at the unit-level for the

RVEXE, and L2 and are internal to the module. It is highly

recommended that the RTL writer creates these assertions in

conjunction with the RTL. Examples of low-level assertions

are:

 Request-Grant: A request is granted within a certain

number of cycles.

 One-Hot: The output of a signal is always one-hot.

 Mutually-Exclusive: Read and Write are mutually

exclusive.

High-level assertion checks can be written using low-level

assertion checks, and it is recommended that the verification

engineer write these checks. Areas where high-level assertion

checks are recommended are:

Interface Checks – Checking the interface between the

various components of a SOC. As an example, the interface

between the L2 and the RVEXE.

Cache Coherence Protocol Checks – The cache coherence

protocol can be verified by providing a high-level SVA-based

checker to check the finite-state machine. In some cases

cache coherence can also be checked by developing a

reference model.

Bus Transactions – Checking that the bus or the

interconnect, handled all requests, and handled them in order

with the right priority.

All assertion-based checkers should be written in System

Verilog, to be fully compatible with UVM. All assertions can be

input into a formal verification tool for static formal

verification.

5.0 Pre-loaders/Injectors

5.1 Cache/Array Loaders

The cache pre-loaders will be generated based on a specific

implementation configuration (cache size, associativity)

provided in the configuration file. The cache loaders will be

needed to preload the level one and level two caches during

reset. This is to prevent running through the entire boot

sequence. Additionally, cache preloading is required to get

the cache initialized to a certain state to verify interesting

scenarios (cache coherence) in an accelerated fashion.

The array pre-loaders will be generated based on a specific

implementation configuration (BTB size) provided in the

configuration file. The array loaders will have the ability to

preload array structures in the design, like the BHT. The

primary use for array pre-loaders will be to be verify hard to

test features in an accelerated fashion.

5.2 Injectors

Injectors can be used in all three levels of hierarchical test
benches. These injectors will be generated based on the
configuration file. For example, for ECC supported memory
single bit errors, and double bit errors can be injected. Three
categories of injectors will be needed

Interrupt Injection – To test both local and global

interrupts, the interrupt injector will inject an interrupt as a

request.

Error Injection – To test the reliability features in the design

like ECC the error injector will be needed to inject single or

double bit errors.

Event Injector – Debug requests, and other interesting

events will be injected by the event injection mechanism.

All injectors will be portable in all hierarchical levels, and

configurable via the configuration file.

6.0 Coverage

6.1 Coverage-Based Methodology

At each level of the hierarchy unit, core, or SOC a coverage-

based methodology will be used. Coverage categories are list

below:

 Machine-Generated Code Coverage: Line, Code, Toggle,

Expression.

 Functional Internal: Internal coverage objects.

 Functional Interface: Interface coverage objects.

Functional coverage objects are generated from a test

plan. Also, functional coverage objects will leverage assertions

both low-level, and high-leve

A Hierarchical and Configurable Strategy to Verify RISC-V based SOCs

© Copyright TessolveDTS, Inc. 2018

7.0 Conclusion

This document shows hierarchical and configurable

verification strategy to for RISC-V based SOCs. A three-level

hierarchy is proposed for test benches. The three levels are:

1. Unit,

2. Core

3. SOC

Each level of the hierarchical test bench is configurable for

both architectural and micro-architectural parameters. The

generation of the specific configurable test bench is automated

based on a configuration file.

This document also lists the areas under test, and stimulus

and checkers needed.

References

1. SiFive, “U54-MC Core Complex Manual,” Oct 4,

2017.

2. A. Waterman and K. Asanovic, Eds.,The RISC-V

Instruction Set Manual, Volume I:User-Level ISA,

Version 2.2, May 2017.

3. The RISC-V Instruction Set Manual Volume II:

Privileged Architecture Version 1.10, May 2017.

4. Accellera, Portable Stimulus Early Adopter

Specification,” June, 2017.

5. S. Gupta, “Efficient Verification of Mobile SOCs with

Perspec and Portable Stimulus, CDN Live Conference,

April 2017.

6. University of Berkeley Architecture Research,

“TileLink Protocol v0.3.3,” 2017.

About Tessolve

TessolveDTS, Inc, (Tessolve) provides services and products to

organisations developing complex products in the

microelectronics and embedded software and systems

industries.

Tessolve operates globally with offices in the UK, China,

Germany, India, Singapore, Malaysia, Ja the USA plus a network

of international partners.

www.tessolve.com

All product or service names are the property of their

respective owners.

http://www.tessolve.com/

